Group quasi-representations and almost flat bundles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Quasi-representations and Almost Flat Bundles

We study the existence of quasi-representations of discrete groups G into unitary groups U(n) that induce prescribed partial maps K0(C ∗(G)) → Z on the K-theory of the group C*-algebra of G. We give conditions for a discrete group G under which the K-theory group of the classifying space BG consists entirely of almost flat classes.

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...

متن کامل

quasi-permutation representations of suzttki group

by a quasi-permutation matrix we mean a square matrix over the complex field c with non-negative integral trace. thus every permutation matrix over c is a quasipermutation matrix. for a given finite group g, let p(g) denote the minimal degree of a faithful permutation representation of g (or of a faithful representation of g by permutation matrices), let q(g) denote the minimal degree of a fait...

متن کامل

Involutory Hopf Group-coalgebras and Flat Bundles over 3-manifolds

Given a group π, we use involutary Hopf π-coalgebras to define a scalar invariant of flat π-bundles over 3-manifolds. When π = 1, this invariant equals to the one of 3-manifolds constructed by Kuperberg from involutary Hopf algebras. We give examples which show that this invariant is not trivial.

متن کامل

Group Quasi-representations and Index Theory

Let M be a closed connected manifold and let D be an elliptic operator on M . Let G be a discrete countable group and let M̃ → M be a principal G-bundle. Connes and Moscovici showed that this data defines an analytic index ind`1(G)(D) ∈ K0(`(G)). If B is a unital tracial C*-algebra, we give a formula for the trace of the image of ind`1(G)(D) in K0(B) under the map induced by a quasi-representati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2014

ISSN: 1661-6952

DOI: 10.4171/jncg/152